Spin
Predefined local spaces for spin systems.
FiniteMPS.SU₂Spin — Module module SU₂SpinPrepare the local space of SU₂ spin-1/2.
Fields
pspace::VectorSpaceLocal d = 2 Hilbert space.
SS::NTuple{2, TensorMap}Two rank-3 operators of Heisenberg S⋅S interaction.
FiniteMPS.SU2Spin — Module const SU2Spin = SU₂SpinFiniteMPS.U₁Spin — Module module U₁SpinPrepare the local space of U₁ spin-1/2.
Fields
pspace::VectorSpaceLocal d = 2 Hilbert space.
Sz::TensorMapRank-2 spin-z operator Sz = (n↑ - n↓)/2.
S₊₋::NTuple{2, TensorMap}
S₋₊::NTuple{2, TensorMap}Two rank-3 operators of S₊₋ and S₋₊ interaction. Note Heisenberg S⋅S = SzSz + (S₊₋ + S₋₊)/2.
FiniteMPS.U1Spin — Module module U₁SpinPrepare the local space of U₁ spin-1/2.
Fields
pspace::VectorSpaceLocal d = 2 Hilbert space.
Sz::TensorMapRank-2 spin-z operator Sz = (n↑ - n↓)/2.
S₊₋::NTuple{2, TensorMap}
S₋₊::NTuple{2, TensorMap}Two rank-3 operators of S₊₋ and S₋₊ interaction. Note Heisenberg S⋅S = SzSz + (S₊₋ + S₋₊)/2.
FiniteMPS.NoSymSpinOneHalf — Module module NoSymSpinOneHalfPrepare the local space of U₁ spin-1/2. Basis convention is {|↑⟩, |↓⟩}.
Fields
pspace::VectorSpaceLocal d = 2 Hilbert space.
Sz::TensorMap
Sx::TensorMap
Sy::TensorMapRank-2 spin-1/2 operators.
S₊::TensorMapRank-2 spin-plus operator S₊ = Sx + iSy. S₋::TensorMap Rank-2 spin-minus operator S₋ = Sx - iSy.