Fermion
Predefined local spaces for fermions.
Spinless fermion
FiniteMPS.U₁SpinlessFermion — Module module U₁SpinlessFermionPrepare some commonly used objects for U₁ spinless fermions.
Fields
pspace::VectorSpaceLocal d = 2 Hilbert space.
Z::TensorMapRank-2 fermion parity operator Z = (-1)^n.
n::TensorMapRank-2 particle number operator.
FdagF::NTuple{2, TensorMap}Two rank-3 operators of hopping c^dag c.
FFdag::NTuple{2, TensorMap}Two rank-3 operators of hopping c c^dag.
ΔdagΔ::NTuple{4, TensorMap}Four operators of pairing Δ^dag Δ, where Δᵢⱼ = cᵢcⱼ is the pairing operator. Rank = (3, 4, 4, 3). Sign convention: (i,j,k,l) gives cᵢ^dag cⱼ^dag cₖ cₗ = - cⱼ^dag cᵢ^dag cₖ cₗ = - Δᵢⱼ^dag Δₖₗ.
FiniteMPS.U1SpinlessFermion — Module const U1SpinlessFermion = U₁SpinlessFermionSpin-1/2 fermion
FiniteMPS.U₁SU₂Fermion — Module module U₁SU₂FermionPrepare some commonly used objects for U₁×SU₂ fermions.
Nothing is exported, please call U₁SU₂Fermion.xxx to use xxx.
Fields
pspace::VectorSpaceLocal d = 4 Hilbert space.
Z::TensorMapRank-2 fermion parity operator Z = (-1)^n.
n::TensorMapRank-2 particle number operator n = n↑ + n↓.
nd::TensorMapRank-2 double occupancy operator nd = n↑n↓.
SS::NTuple{2, TensorMap}Two rank-3 operators of Heisenberg S⋅S interaction.
SSS::NTuple{3, TensorMap}Three operators of chiral operator imag(S⋅(S×S)). Rank = (3, 4, 3). SSS = imag(S⋅(S×S)) = -im * S⋅(S×S) –> S⋅(S×S) = im * SSS NOTICE: The chiral operator S⋅(S×S) is a pure imaginary operator under the current basis. Thus define SSS as the imaginary part of S⋅(S×S) to reduce the computational overhead.
FdagF::NTuple{2, TensorMap}Two rank-3 operators of hopping c↑^dag c↑ + c↓^dag c↓.
FFdag::NTuple{2, TensorMap}Two rank-3 operators of hopping c↑ c↑^dag + c↓ c↓^dag.
ΔₛdagΔₛ::NTuple{4, TensorMap}Four operators of singlet pairing correlation Δₛ^dagΔₛ, where Δₛ = (c↓c↑ - c↑c↓)/√2. Rank = (3, 4, 4, 3).
ΔₜdagΔₜ::NTuple{4, TensorMap}Four operators of triplet pairing correlation Δₜ^dag⋅Δₜ, where Δₜ is the triplet pairing operator that carries 2 charge and 1 spin quantum numbers. Rank = (3, 4, 4, 3).
Δₛ::NTuple{2, TensorMap}
Δₛdag::NTuple{2, TensorMap}Singlet pairing operators Δₛ and Δₛ^dag. Rank = (4, 3). Note the first operator has nontrivial left bond index.
CpCm::NTuple{2, TensorMap}Two rank-3 operators of C+C- correlation where C+ = c↑^dag c↓^dag and C- = C+^dag = c↓c↑. Note both operators are bosonic.
FiniteMPS.U1SU2Fermion — Module const U1SU2Fermion = U₁SU₂FermionFiniteMPS.ℤ₂SU₂Fermion — Module module ℤ₂SU₂FermionPrepare some commonly used objects for ℤ₂×SU₂ fermions. Basis convention in (0, 0) sector is {|0⟩, |↑↓⟩}.
Each operator has the same name and behavior as U₁SU₂Fermion, details please see U₁SU₂Fermion.
FiniteMPS.Z2SU2Fermion — Module const Z2SU2Fermion = ℤ₂SU₂FermionFiniteMPS.U₁U₁Fermion — Module module U₁U₁FermionPrepare the local space of d = 4 spin-1/2 fermions with U₁ charge and U₁ spin symmetry.
Fields
pspace::VectorSpaceLocal d = 4 Hilbert space.
Z::TensorMapRank-2 fermion parity operator Z = (-1)^n.
n₊::TensorMap
n₋::TensorMap
n::TensorMapRank-2 particle number operators. ₊ and ₋ denote spin up and down as ↑ and ↓ cannot be used in variable names.
nd::TensorMapRank-2 double occupancy operator nd = n↑n↓.
Sz::TensorMapRank-2 spin-z operator Sz = (n↑ - n↓)/2.
S₊₋::NTuple{2, TensorMap}
S₋₊::NTuple{2, TensorMap}Two rank-3 operators of S₊₋ and S₋₊ interaction. Note Heisenberg S⋅S = SzSz + (S₊₋ + S₋₊)/2.
FdagF₊::NTuple{2, TensorMap}
FdagF₋::NTuple{2, TensorMap}Two rank-3 operators of hopping c↑^dag c↑ and c↓^dag c↓.
FFdag₊::NTuple{2, TensorMap}
FFdag₋::NTuple{2, TensorMap}Two rank-3 operators of hopping c↑ c↑^dag and c↓ c↓^dag.
ΔdagΔ₊₊::NTuple{4, TensorMap}
ΔdagΔ₋₋::NTuple{4, TensorMap}
ΔdagΔ₊₋::NTuple{4, TensorMap}Rank-4 operators of pairing correlation. Note ΔdagΔ₊₋ means c↑^dag c↓^dag c↓ c↑.
EdagE₊::NTuple{4, TensorMap}
EdagE₋::NTuple{4, TensorMap}Rank-4 operators of triplet exciton correlation. Note EdagE₊ means c↑^dag c↓ c↑ c↓^dag so (i, j, i, j) gives the correlation of the same pair.
FiniteMPS.U1U1Fermion — Module const U1U1Fermion = U₁U₁FermiontJ fermion
Spin-1/2 fermion without double occupancy.
FiniteMPS.U₁SU₂tJFermion — Module module U₁SU₂tJFermionPrepare some commonly used objects for U₁×SU₂ tJ fermions, i.e. local d = 3 Hilbert space without double occupancy.
Behaviors of all operators are the same as U₁SU₂Fermion up to the projection, details please see U₁SU₂Fermion.
FiniteMPS.U1SU2tJFermion — Module const U1SU2tJFermion = U₁SU₂tJFermionFiniteMPS.U₁U₁tJFermion — Module module U₁U₁tJFermionPrepare some commonly used objects for U₁×U₁ tJ fermions, i.e. local d = 3 Hilbert space without double occupancy.
Behaviors of all operators are the same as U₁U₁Fermion up to the projection, details please see U₁U₁Fermion.
FiniteMPS.U1U1tJFermion — Module const U1U1tJFermion = U₁U₁tJFermionFiniteMPS.ℤ₂SU₂tJFermion — Module module ℤ₂SU₂tJFermionPrepare some commonly used objects for ℤ₂×SU₂ tJ fermions, i.e. local d = 3 Hilbert space without double occupancy.
Behaviors of all operators are the same as ℤ₂SU₂Fermion up to the projection, details please see ℤ₂SU₂Fermion.
FiniteMPS.Z2SU2tJFermion — Module const Z2SU2tJFermion = ℤ₂SU₂tJFermion