Spin
Predefined local spaces for spin systems.
FiniteMPS.SU₂Spin
— Module module SU₂Spin
Prepare the local space of SU₂ spin-1/2.
Fields
pspace::VectorSpace
Local d = 2
Hilbert space.
SS::NTuple{2, TensorMap}
Two rank-3
operators of Heisenberg S⋅S
interaction.
FiniteMPS.SU2Spin
— Module const SU2Spin = SU₂Spin
FiniteMPS.U₁Spin
— Module module U₁Spin
Prepare the local space of U₁ spin-1/2.
Fields
pspace::VectorSpace
Local d = 2
Hilbert space.
Sz::TensorMap
Rank-2
spin-z operator Sz = (n↑ - n↓)/2
.
S₊₋::NTuple{2, TensorMap}
S₋₊::NTuple{2, TensorMap}
Two rank-3
operators of S₊₋
and S₋₊
interaction. Note Heisenberg S⋅S = SzSz + (S₊₋ + S₋₊)/2
.
FiniteMPS.U1Spin
— Module module U₁Spin
Prepare the local space of U₁ spin-1/2.
Fields
pspace::VectorSpace
Local d = 2
Hilbert space.
Sz::TensorMap
Rank-2
spin-z operator Sz = (n↑ - n↓)/2
.
S₊₋::NTuple{2, TensorMap}
S₋₊::NTuple{2, TensorMap}
Two rank-3
operators of S₊₋
and S₋₊
interaction. Note Heisenberg S⋅S = SzSz + (S₊₋ + S₋₊)/2
.
FiniteMPS.NoSymSpinOneHalf
— Module module NoSymSpinOneHalf
Prepare the local space of U₁ spin-1/2. Basis convention is {|↑⟩, |↓⟩}
.
Fields
pspace::VectorSpace
Local d = 2
Hilbert space.
Sz::TensorMap
Sx::TensorMap
Sy::TensorMap
Rank-2
spin-1/2 operators.
S₊::TensorMap
Rank-2
spin-plus operator S₊ = Sx + iSy
. S₋::TensorMap Rank-2
spin-minus operator S₋ = Sx - iSy
.